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Abstract. The low Reynolds number motion and deformation of a neutrally buoyant drop (immersed in a different 
viscous fluid) due to its interaction with a translating solid particle (immersed in the same fluid) is studied. This is 
achieved by means of a system of second-kind Fredholm integral equations. It is shown that the resulting system 
of integral equations possesses a unique continuous solution, and thus the proposed form of solution is assured to 
provide the unique regular solution of the present interaction problem. 

1. In troduct ion  

The practical importance of studying the motion of solid particles, drops and bubbles is 
due to their common occurrence in many industrial and biological systems, as well as in a 
number of technological processes. Chemical and metallurgical engineers rely on bubbles and 
drops for such operations as distillation, absorption, flotation, and spray drying. Mechanical 
engineers have studied droplet behaviour in connection with combustion operations, and 
bubbles in electromachining and boiling, etc. Particle suspensions play an important role in a 
wide variety of processes; flow of blood particles and proteins, pipeline transport of slurries, 
paper making, processing of ceramics and polymer or ceramic composite material, etc. The 
prediction of the structure and rheology of suspensions is thus of both of theoretical and 
practical interest. 

One of the critical issues in the study of the suspension of such objects (solid particles, 
drops and bubbles) is the determination of their hydrodynamic interactions. Submerged objects 
moving through a viscous fluid interact quite strongly, with a persistence that decays as R-1 
or R -2, depending on whether the object exerts a net force on the fluid or not. 

The investigation of the mechanics of solid particles, drops and bubbles has a long record 
in fluid dynamics, and continues to be a substantial portion of pure and applied research. 
A general review on the subject is given by Clift, Grace and Weber [1]. One of the most 
important problems within the general area of drop mechanics concerns the shape of these 
objects moving under the action of an external fluid. In this work we are interested in the 
motion and deformation of a neutrally buoyant drop (immersed in a different viscous fluid) 
due to its interaction with a translating solid particle (immersed in the same fluid). It is known 
that at small Reynolds number and constant external velocity, the flow associated with a single 
spherical drop, in an unbounded domain, satisfies all the necessary boundary conditions for 
steady motion independently of surface tension (for more details see Batchelor [2]). In our 
case, due to the shear on the drop surface induced by the exterior flow, the drop will deform 
and displace as the solid particle approaches it. 
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Rallison and Acrivos [3] developed a numerical solution for the low Reynolds number 
deformation of a viscous drop suspended in a second fluid that is caused to shear, using the 
Green's integral representation formulae for the fluids inside and outside the drop. Integral 
representations analogous to those employed in potential theory exist for Stokes flows, and 
their use can be traced back to the work of Lorentz [4]; Odqvist [5] realized that the terms in 
the integral representation could be inspected separately and used these terms to create Stokes 
solutions. He called these terms the single and double layer. 

The following integral representation formulae for the velocity fields are found from 
Green's formulae for the Stokes equation. In the unbounded domain f2e exterior to a single 
drop, with u ~ as the asymptotic value at infinity, 

ui(x) + fs Kij(x,y)(uj(y))edSy = u ~ ( x ) +  fs  u~(x,y)(ajk(u(y)))enk(y)dS u 

for every x E f2e, where (ui(y))e and (alj(u(y)))e are the values of the velocity field ui and 
of the stress crij (u(y)), respectively, at a point y E S coming from f~, and 

1 ( ~  (xi-Yi)(xj-yj)) ix y[ 
u~(x,y)= 8-7r + r~ ; r =  - 

is the fundamental solution of the Stokes equations, known as stokeslet at the point y, and 

3 - y )(zj - - 

Kij(x,y) = aik(uJ)nk = 47r r 5 nk(y). 

In the bounded domain f~i interior to the drop, we have the following Green's representation 
formulae: 

f 1 f 
ui(x) - Js gi j (x ,y)(uj(y)) idS u = - ~  Js u~(x,y)(ajk(u(y)))ink(y)dS u 

for every x e f~i, where (ui(Y))i and (a~j(u(y)))i are the values of the velocity field ui and 
of the stress a~j(u(y)), respectively, at a point y E S coming from f~i. In the above equations, 
the fluid velocity has been normalized using the viscosity # of the carrying fluid, and the drop 
viscosity is A#. 

By requiring that the above flow fields satisfy the matching conditions at the drop interface, 
Rallison and Acrivos [3] found the following second-kind Fredholm integral equation for the 
unknown surface velocity u(x): 

~ui(~) + l - A fS 1-+~ Kij(~,y) uj(y)dSy=Fi(~) for ~ e S, (1) 

with 

Fi(,)  - 1 + 2 [ U ' ( ' ) + / s u ~ ( ' ) Y ) T n j ( Y ) ~ z k k  d S ' ] A  

The deformation of the surface interfaces is found from the kinematic conditions at such 
interfaces, which relate the rate of displacement of the interface to the normal velocity 
components at its surface. 

When A = I, Eq. (i) takes the particularly simple form 

fs j(~,y)Tnj(y ) cgnk dSu, = + 
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which, in fact, is valid at all points x, not only those on S. 
It is known that the homogeneous form of Eq. (1) has only one eigensolution when A = 0, 

corresponding to the case of a viscous drop of zero viscosity (gas bubble), and if A = oo, in the 
case of a viscous drop of infinite viscosity (solid particle), the six rigid-body motions for the 
drop are all eigensolutions (see Ladyzhenskaya [6]). Therefore, from Fredholm's alternative, 
it follows that the integral Eq. (1) does not admit a unique solution at these two poles of the 
resolvent. Also, it is clear that the resolvent does not have a pole at A = 1 and, therefore, 
the same will be true in some small neighbourhood around A = 1. Rallison and Acrivos [3] 
conjectured that, probably, there are no eigensolutions for 0 < A < co, since their numerical 
solution encountered no difficulties for values of A tested in that range. 

Power [7] proved, analytically, that the integral Eq. (1) possesses a unique continuous 
solution u(x) for any continuous datum F(x) when 0 < A < ~ ;  in other words, the resolvent 
of (1) does not have a pole in this range of A. Therefore, the unique solution of integral Eq. 
(1) gives the drop-surface velocity for all possible cases, except when the object is a solid 
particle (A = cx~) or a gas bubble (A = 0). 

In the case of a solid particle, (A -- c~), Youngren and Acrivos [8] used the integral 
representation formulae for the exterior Stokes flow around the particle, to obtain a first 
kind Fredholm integral equation for the unknown surface traction. Youngren and Acrivos's 
first-kind approach has been used extensively in the literature for the numerical solution of 
different problems, including particle-particle interaction, the motion of a particle near a fluid 
interface or a rigid wall, the motion of particles in a container, etc. (for more details see Power 
and Wrobel [9]). As is known, Fredholm integral equations of the first kind generally give rise 
to unstable numerical schemes based upon discretization of the surface integrals involved, the 
instability manifesting itself in the ill-conditioning of the matrix approximation of the kernel. 
Nonetheless, it is possible to apply the discretization method if only low-order accuracy is 
desired and the system of linear equations to be solved is not too ill-conditioned, as appears 
to be the case in those works that use Youngren and Acrivos's method. On the other hand, 
solving an equation of the second kind is a well-posed problem. 

Power and Miranda [10] explained how integral equations of the second kind can be 
obtained for general three-dimensional Stokes flows around a single particle. They observed 
that, although the double-layer representation which leads to a second-kind integral equation 
coming from the jump property of its velocity field across the density carrying surface can 
represent only those flow fields which correspond to surfaces that are force- and torque-free, 
the representation may be completed by adding terms that give arbitrary total force and torque 
in suitable linear combinations; to be more precise, a stokeslet and a rotlet located in the 
interior of the particle. The extension of Power and Miranda's method to multiple particles 
in an unbounded flow was given by Power [11] and Karrila et al. [12], and to a particle in 
a bounded flow by Power and Miranda [13] and Karrila and Kim [14]. In the last case, the 
fluid moves exterior to the particle surfaces but is contained by an exterior contour; therefore, 
it appears as an exterior flow when looking from the particle, but as an interior one from the 
exterior contour. The second kind formulation for this problem is not a trivial extension, since 
the completeness procedure of the deficient range of the double-layer potential due to the 
existence of an exterior container requires special care (for more details, see Kim and Karrila, 
[15]). 

Karrila and Kim [ 14] and Karrila et al. [ 12] give an elegant mathematical interpretation of 
the above method. They observed that this method relates to Wielandt's deflation: by removing 
the end points of the spectrum of the integral operator of an integral equation of the second 
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kind arising from a double-layer representation without any completion, those eigenvalues are 
moved without affecting the rest of the eigenvalues, providing a boundedly invertible operator 
and then allowing direct iterative solution. Karrila and Kim [14] call Power and Miranda's 
new method the Completed Double Layer Boundary Integral Equation Method ( CDL-IEM), 
since it involves the idea of completing the deficient range of the double-layer operator. It is 
important to recognize here that Power and Miranda's completed method is an extension, to 
the Stokes system of equations, of Mikhlin's results [ 16] on the exterior Dirichlet problem for 
Laplace's equation. 

A very important contribution of Kim and co-workers is that they show that the Completed 
Double Layer Boundary Integral Equation Method is the most efficient method to numerically 
solve the mobility problem, where the force and torque on each particle are specified and the 
unknown particle motion has to be determined. 

Using an approach similar to Rallison and Acrivos [3] for a single drop, Manga and Stone 
[ 17] studied the interaction between two buoyancy-driven deformable drops, of viscosity A l# 
and A2#. For that case they obtained a system of integral equations that can be written as the 
following single equation: 

~¢i(~) + 31 f s  KiJ(~,Y) Cj(Y) dSu + 32 fs2 Kij(~,y) Cj(y) dS u = fi(~), (2) 

where 
1 - A1 1 - A2 

31 = l + ) q  32  l + A 2  

. Onk A ~ . Onk A 

and 

¢i(~) = (1 + )~I)ul(~) when ~ E $1, 
¢i(~) = (1 + A2)u~(~) when ~ E $2. 

By considering the size of one of the drops to be infinite in the above formulation, Manga 
and Stone [18] studied the low Reynolds number buoyancy-driven translation of a deformable 
drop towards and through a fluid-fluid interface. 

By reducing of the original system of integral equations to a single integral equation, Power 
[19] was able to conduct a theoretical analysis of the solubility of integral equation (2), by 
extending his previous work on a single drop. He showed that all poles of the resolvent of 
integral Eq. (2) are real, and that there is no pole when 0 > AI > oo and 0 > A2 > oo. Hence, 
by solving integral Eq. (2), we are able to study the interaction between two different viscous 
drops, but not the interaction between a solid particle or a gas bubble with a viscous drop. 

This work presents a constructive way of finding the hydrodynamic interaction between 
a solid particle and a viscous drop. This is achieved by means of a system of second-kind 
Fredholm integral equations. The approach presented here is an extension of Power and 
Miranda's Completed Double Layer Boundary Integral Equation Method. It also shows that 
the resulting system of integral equations possesses a unique continuous solution, and thus 
the proposed form of solution is assured to provide the unique regular solution of the present 
interaction problem. 
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2. Statement of the problem 

We will consider the low Reynolds number interaction between a translating solid particle 
in a viscous fluid, and a neutrally buoyant viscous drop, with viscosity ratio A, which has 
interfacial surface tension 7. The governing equations for the fluid velocity u and pressure p 
are the Stokes equations, written here in the form: 

(gui = 0; (9~ij _ O, (3) 
Oxi Oxj 

where 

{ -PSij + (Oui/Ozj + cOuj/Ozi) for x E f}e 
aij = -p~fij + A(Oui/Oxj + Ouj/Oxi) for x e f2i 

(4) 

Here, we have normalized the fluid velocity, using the viscosity # of the carrying fluid; the 
drop viscosity is A#. The flow fields have to satisfy the following asymptotic, boundary (at 
the particle surface $1), and matching (at the drop surface $2) conditions: 

u i ~ O ,  p ~ O  as [ x [ ~ e o ,  (5) 

u i = U i  for every ~ES1  (6) 

and 

ank 
[U]S2 = 0, [(rijni]s2 = 7nj Oxk for every ~ E $2, (7) 

where [ ]s2 denotes the jump across the surface of the drop $2 from the outside f}e (the carrying 
fluid domain) to the inside 12i (the viscous drop domain), n is the outward unit normal and 
Onj/Oxj is the surface curvature. It has been assumed that, during deformation, the drop 
remains smooth enough, so that the curvature can be approximated by the divergence of n. 

The rate of deformation of the drop surface is determined by the kinematic boundary 
condition, which states that the normal component of the fluid velocity at a point ~ of the 
surface drop is equal to the normal component of the surface velocity at that point: 

d~i 
d t n i = u i n i  at ~ES2 .  (8) 

3. Uniqueness of solution 

In order to facilitate our study of uniqueness of the problem stated in the previous section, 
we assume from the start that the flow field (u, p) is such that u(x) converges to zero like 
Ix1-1 , that its derivatives converge to zero like Ix1-2, and that p(x) converges to zero as Ix1-2 
as Ixl --, oo. with the above assumptions conceming the behaviour of the carrying fluid at 
infinity, we obtain the following relations from Green's first identity for Stokes's equations: 

£2 1£ (ouj 0u,3 2 
aij (u, p) nj ui dS = ~ , ~, Oxi + ¢9xj ] d~2, (9) 

aij(u,p) n j u i d S +  aij(u,p) n j u i d S = - ~  , \Oxi + Oxj] dr2. (lo) 
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Taking the difference between the above two equations, and substituting the boundary and 
matching conditions at the particle and drop surfaces, respectively, we obtain: 

o'ij (u, p) nj Ui dS + 7nj ~ ui dS = 
1 2 

- ~ {  In, (Oud + Oui'~2 df~ + f^ [ Ou5 + cOui'~2dfQ. (11) 
\ Oxi Oxj ] .,,~ \ Oxi Oxj ] 

It isclear from the above equation that the present problem does not have more than one 
solution. Indeed, if the flow field satisfies an homogeneous boundary condition on ~ E S1U S:, 
i.e. U = 0 and 3' = 0, then (11) implies 

Oui Ouj 
Oxj + Oxi = 0 for x • f~e U ~i, (12) 

a system that is known to have six linearly independent solutions, corresponding to the motion 
of the fluid as a rigid body. Therefore, (n, p) vanishes throughout space, since such a null field 
is the only rigid-motion continuous velocity compatible with the asymptotic behaviour of the 
flow field at infinity. 

4. Second kind integral equation solution 

Following Power and Miranda's completed method, we will seek the solution of the above 
interaction problem in the following form. In the unbounded domain exterior to the particle 
and the drop, we will represent the velocity field as: 

ui(x) = fs, Kij(x'Y)¢J(Y) dSu - f& u~(x,y)¢j(y) dS u + u~(x)a 5 + r{(x)w5, (13) 

together with its corresponding pressure 

1 0 ~ xk-- 1 fS X k -  1 xj 
p(x) -- 27r Oxj 1 ~YkCk(Y)nj(Y) dSu+"~ 2 ~YkCk(y) dSy 4r~-~cu(14) 

for every x • f~e. Here R = [xl is the distance from the origin, chosen at the centre of the 
solid particle, to a point x in the flow field; and in the bounded domain interior to the drop we 
have 

u,(x) = fsl K'j(x'Y)¢J(Y) dSy - f& u~(x,y)¢s(y ) dSy + u~(x)a 5 + r~(x)w 5 (15) 

with 

2--~'~ O fs fs xj p(x) = dSy + y k  ¢k(y) day ~-~ a j(16) 
47r 

for every x • f~i. 
The function 

1 eilk~ljXk (17) 
8. 

is a singular solution of the non-homogeneous Stokes system of equations, with non- 
homogeneous term (forcing function) given by eit k (O/OXk) 6tj 6(X), called rotlet. 



Integral equation formulation and Reynolds number interaction 231 

It can be observed that in the above representational formulae, to the combination of a 
double-layer potential on the surface Sl: 

Wi(x) = f~ Ki j (x ,y)¢ j (y)  dS u (18) 
Jb  1 

and a single layer potential on the surface $2: 

~ (x)  = - £2 u~(x,y)¢k(y) dS u, (19) 

we have added a stokeslet u j (x) located at the origin, whose strength is given by the constant 
vector a ,  and a rotlet r j (x), also located at the origin, with strength equal to the constant 
vector w. 

This representation automatically satisfies the governing equations for the flow field in the 
exterior and interior domains, and the velocity matching condition at the drop surface $2, due 
to the continuity property of the single-layer potential. 

It is convenient, for later use, to choose o~ and w as follows: 

ai  = ~ Cj(( )~}(()  dS~ for i =  1,2,3, (20) 
1 

wi = fS ¢j(()~}+3(()  dS~ for i = 1,2,3, (21) 
1 

where qo i for i = 1 ,2 , . . .  6 give the motion of the fluid as a rigid body, taken to be: 

qoi(x) = (~1i, ~2i, ~3i) for i = 1,2, 3 

qO4(X) = (0, X3,--X2) ,  qO5(X) = ( - -X3,0 ,  Xl) ,  ~6(X)  = ( X 2 , - - X l , 0 ) .  

(22) 

As is well known, a stokeslet located at the origin exerts a total force equal to its strength 
and zero total torque on any closed surface enclosing it, and a rotlet exerts a total torque equal 
to its strength and zero total force on any surface enclosing it. Therefore, since a hydrodynamic 
double-layer potential with density carrying surface $1 yields zero total force and torque on 
S1, and a single-layer potential with a density carrying surface $2 exerts a total force and 
torque on $2 equal to 

- IS2 ¢ i ( Y ) ~  dSy 

for k = 1,2, 3 and k = 4, 5, 6, respectively, it can be concluded that the total force and torque 
on the surface $1 resulting from the flow field defined by equations (13)-(16) will be equal to 
ct and w, respectively, and the total force and torque on the surface $2 will be 

F i = - / s  ¢ i ( Y ) ~ d S y  for k = 1 , 2 , 3 ,  
2 

Ti = - I s  ¢i(y)~/k dSv for k = 4,5,6.  
2 

For more details about the dynamic properties of the singularities considered here, as well as 
those of the double-layer and single-layer potentials, see Power and Wrobel [9]. 
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Letting a point x E f~e approach a point ~ E S1, we obtain from the above representational 
formulae for the exterior velocity field 

Ui(~) = - ~ ¢ i ( ~ ) +  ~ ,  Kij(~,y)¢j(y) dS u 

- f& u/k(~,y)¢k(y) dS u + uJ(~)aj + r~(~)wj ~ E S1, (23) 

where use has been made of the discontinuity property of a double-layer potential across 
the density-carrying surface, and the boundary condition at the surface of the solid particle. 
Henceforth, we assume that U is continuous on $1. 

Taking the surface tension of the flow field exterior to the particle and the drop, when 
x E f ~  tends to a point ~ E $2, we have: 

aij(U)enj = - ~ ¢ i ( ~ ) -  ~ Kji(y,~)¢j(y) dS u 

+aik ( f& Kij(~, Y)¢k(Y)dSu)nk+ Kij(()aj + Tij(~)wj, 

(24) 

where 
Tij (~) = aik (r k (~))nj 

is the surface tension due to a rotlet. 
Similarly, taking the surface tension of the flow field interior to the drop, when x E f~i 

tends to a point ~ E $2, we have: 

aij(u)inj = A( ~¢i(,) - -  ~ Kji(y,')¢j(y) dSy 

+aik( f Kij(',y)¢k(y)dSy)nk + Kij(,)c~j + Tij(,)wj }, \ JS~ 
(25) 

where use has been made of the discontinuity property of the surface tension of a single-layer 
potential across the density carrying surface. Here, aij (u)~ is the limiting value of the stress 
aij (u) when a point x tends to a point ~ E $2 coming from ft~, and aij (u)i is the limiting 
value of the stress when x tends to ~ E $2 coming from f~i. 

Substituting (24) and (25) in the surface-traction matching condition at the drop surface, 
we obtain 

Onk 

) 

Kji(y,~)¢j(y) dSy + aik ( f  s, Kij(~,y)¢k(y) dSy)nk 

_ (1 + A) ¢i(~), ~ E $2. 
2 

(26) 

Eqs. (23) and (26) give a system of Fredholm second-kind integral equations for the 
unknown vector density ¢ at the surfaces $1 and $2. An apparent difficulty in the numerical 
solution of the above system of integral equations is that the integrals appear to be singular of 
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the Cauchy type. In fact, they are weakly singular, behaving as r -2+'~ when r tends to zero, 
since 

3 (~i - y i ) ( ~ d  - y d ) ( Z k  - y~)  
Kid (x, y) = 47r r 5 (27) 

3 Or Or Or 
na(y) = 47rr 2 O~i O~ d On u 

and 

Or 
< E r  a 

0n u 

with a the Lyapunov exponent (0 < a < 1). 
When A = 1, Eq. (26) takes the particularly simple form 

0nk 
"ynd Ozk = -¢i(~), 

and hence, Eq. (23) reduces to 

ui(f) -T fs u~(~,y)nk(y) ~ d S y =  

(28) 

S1, 

which possesses a unique continuous solution t~ in accordance with the completed double- 
layer theory. Therefore, it is clear that the resolvent of the system of integral equations (23) 
and (26) does not have a pole at A = 1 and consequently, the same will be true in a small 
neighbourhood around A = 1. 

Generally speaking, integral equations (23) and (26) cannot be solved in closed form, and 
the solution has to be found by numerical approximation methods. However, it is known 
that such methods can only be applied with confidence when the solubility of the integral 
equation has been established beforehand; moreover, a question concerns the solubility with 
an arbitrary right-hand member for a given value of the parameter A. 

In order to show that the above system of integral equations possesses a unique continuous 
solution ~ for a continuous datum U and 7nOnk/Oxk, it is sufficient, according to Fredholm's 
alternative, to show that the following homogeneous system for ¢0 admits only the trivial 
solution in the space of continuous functions: 

1 0 
-~¢i(~) + fsl Kij(GY)C°(Y) dSu 

dSy d 0 d 0 - + u i ( ~ ) a j  = 0 ,  $1 ( 2 9 )  + ri (¢)w d ~ 

and 

1 - &  

} +Kid(~)a°+TiJ(5) w° - g¢i(~) = 0 ,  ~ e $2, (30) 

where 

aio = fs  ¢°(~)~'(~)dS~ for / = 12,3,, (31) 
1 
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0 f s  ¢°(~)(P~+3(~)dS~ for i 1,2,3. (32) W i = 
1 

From the uniqueness of the solution of the present problem, and the system of homogeneous 
integral equations (29) and (30), it follows that the pair of vector fields V i , V2 defined below 
are equal in f~ t2 ~i: 

v 2(x) = fs2 

Kij(x, y)¢O(y) dS u j 0 + r i (x)wj, (33) 

u~(x,y)¢°(y) dSy - u~(x)a °. (34) 

On the other hand, since V I yields zero total force on the particle surface S1, and V 2 yields 
a non-zero total force there, it follows that the resulting force on $1 exerted by V 2 must be 
zero. Then 

a0 = f~ ¢0(~)~}(~) dS( = 0 for i =  1,2,3. (35) 
1 

In a similar way, the resulting torque exerted by V 1 on the surface $1 is equal to w °, and 
the torque due to V 2 is equal to zero. Then it follows from the above flow field identity that 

0 fS ~0(~)~}+3(~) dS~ -- 0 for i = 1,2,3. (36) W i = 

Therefore, Eqs. (33)-(36) imply that the double-layer potential with density carrying 
surface $i, has to be equal to minus the single-layer potential with density carrying surface 
$2 in f~ t_J ~i, i.e. 

~1 Kij(x'Y)¢°(Y)dSv= fs2 ui(x'y)¢0(Y)dSy. (37) 

In particular, it follows that the surface traction of the double-layer potential at points on 
the surface $2 is given by 

( fs Kij(~,Y)¢°(y) dSy)nk ~¢i(~)1 ° = + fs2 Kji(Y'()¢°(Y) dSu (38) (Tik 

coming from f~, and 

( fs KiJ(',Y)¢°(y) dSy)nk -~¢,(')1° = + fS2 Kji(Y'~)¢°(Y) dSy (39) (Tik 

coming from f~i, which are identical owing to the regular behaviour of the double-layer 
potential at any point exterior to its density-carrying surface. 

Substituting (35), (36) and (38) in (30), we get: 

2A • 
l + A ¢ i  = 0 ,  for every ~ES2 .  

From the above expression it follows that ¢o = 0 on $2 as long as A # 0, the case for A = 0 
corresponds to a viscous drop of zero viscosity (gas bubble). In a similar way, substituting 
(35), (36) and (39) in (30), we get: 

2 0 = 0 ,  for every ~ES2 ,  1 +)~¢i 



Integral equation formulation and Reynolds number interaction 235 

implying that ~0 = 0 on $2 as long as A < oc, the case for A = oc corresponds to a viscous 
drop of infinite viscosity (solid particle). 

Substituting the null value of the single-layer density and the relations (35), (36) for the 
zero strength of the stokeslet and rotlet, we observe that Eq. (29) reduces to: 

- ~ ¢ i  (~,)+ Kij(~,,y)¢°(y) dSy = 0 for every ( E $1. (40) 
1 

The above homogeneous equation has precisely six linearly independent solutions ~k, for 
k = 1 ,2 , . . . ,  6, defined by the previously given rigid-body motion vectors. Then, necessarily 
q~0 - -  ~ 6 = 1  Ckqoki for i = 1,2, 3, on Sa, where C1, C 2 , "  " " , C6 are some real constants. 

The above general solution for q~0, and Eqs. (35) and (36) imply, for i = 1,2, 3, that: 

Ck fs  ~ ( Y ) ~ ( y ) d S u  = 0 ,  (41) 
1 

fs k i + 3  Ck ~j (y)cpj (y) dSy = O. (42) 
1 

The above linear algebraic system for Cl, C2,. . .  C6 only admits the trivial solution, 
implying that ¢0 = 0 on S1, because the determinant of (41)-(42) has the term 

/ s  ' ' 
~ ~j(y)~j(y) dSy (43) 

as element in its l-th row and q-th column, and is thus the Gram determinant for the vector 
functions ~1, ~o2 . . .  ~6 with a non-vanishing value, on account of the linear independence 
o f ~ k , k = l , 2 , . . . 6 .  

Therefore, for 0 < A < oe the homogeneous system of integral equations (29) and (30) 
admits only the trivial solution, or equivalently the system (23) and (26) possesses a unique 
continuous solution on such a range of A, and then the Stokes flow field defined by this 4~, 
using Eqs. (13)-(16) provides the solution of the present interaction problem. 

After obtaining the drop surface velocity by substituting the unique vector density solution 
of (23) and (26) into the flow field (13).(16), we determine the drop deformation by means 
of the kinematic condition. 

From the stated dynamic properties of the singularities considered here, as well as those of 
the double-layer and single layer potentials, it is found that the total force and torque exerted 
on S1 by the flow field are: 

for i = 1,2,3, (45) 

for i = 1,2,3, (46) Ti = wi = fsl ¢j(~)~+3(~) dS~ 

and those on the surface $2 are: 

Fi = - f& Cj(~)qo~(~) dS~ 

Ti = - fS2 ¢j(~)~}+3(() dS( 

for i = 1,2,3, (47) 

for i = 1,2,3. (49) 

It can be observed that, when an initial spherical drop is far apart from the solid particle, 
in such a way that the single-layer density solution of (26) is only proportional to the normal 
vector, at its density carrying surface, then Eq. (23) reduces to that corresponding to a single 
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solid particle given by Power and Miranda [10], due to the fact that a single layer with the 
normal vector as a density yields zero velocity field in the entire space. As the solid particle 
approaches the drop, the single layer density in (26) diverges from the normal vector yielding 
a non-zero velocity field, which finally will affect the dynamics of both the solid and the 
drop. 

5. Conclusions 

A well-posed system of Fredholm integral equations of the second kind for the problem of the 
low-Reynolds-number interaction between a neutrally buoyant viscous drop and a translating 
solid particle (immersed in the same fluid) has been found. We achieved this by completing the 
deficient range of the system of integral equations obtained when the flow field is represented 
by a linear combination of a single-layer potential, with the drop surface as the density carrying 
surface, and a double-layer potential, with the particle surface as the density-carrying surface 
(completed method). 

The system of integral equations obtained in this work can be used as a basis for the numer- 
ical solution of the present interaction problem, using standard boundary element techniques, 
leading to an efficient and stable numerical scheme for problems of arbitrary geometries. This 
is because it is known that such a method can be applied with confidence only in the case 
when the solvability of the integral equation has been established beforehand. 

One of the advantages of the present method is that the evaluation of the total force and 
torque upon the solid particle is found directly from the expressions for the strength of the 
corresponding stokeslet and rotlet, respectively, used for completing the deficient range of the 
original system of integral equations. 

Since the completed method is amenable to iterative solution, it is expected that the same 
will be true for the resulting linear algebraic system of equations, found after discretization 
and numerical integration of the obtained system of integral equations, allowing the technique 
to be used in the case of large-scale problems. 
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